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Modeling of a Hybrid Passive Damping System 
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The modeling of  a hybrid passive damping system is presented for suppressing the multiple 
vibration modes of  beams in this paper. This hybrid passive damping system consists of a 
constrained layer damping and a resonant shunt circuit. In a passive mechanical constrained 

layer damping, a viscoelastic layer, which is sandwiched between a host structure and a cover 
layer, is used to suppress vibration amplitudes in the high frequency range. A passive electrical 
damping is designed for targeting the vibration amplitude in the low frequency range. The 

governing equations of  motion of the hybrid passive damping system are derived through the 
Hamilton's principle. The obtained mathematical model is validated experimentally. The 
theoretical and experimental techniques presented provide an invaluable tool in controlling the 
multiple vibration modes across a wide frequency band. 
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1. Introduction 

Active damping has been shown to be an 
effective method due to its high power perform- 
ance in controlling the unwanted vibration 
amplitudes of flexible structures (Bailey and 
Hubbard, 1985; Tzou and Tseng, 1991; Wang 
and Rogers, 1991 ; Yang and Lee, 1994, Chae and 
Park, 2002). A typical active damping treatment 
is a piezoelectric layer attached or embedded to 
the vibrating structure. With a proper controller 
design, the vibration energy dissipation can be 
enhanced by providing the electrical energy to the 
piezoelectric material. Hence, in order to obtain 
the high performance of the active damping sys- 
tem, it needs high-cost control especially at high 
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frequency range (Park and Baz, 1999). Such pro- 
blem can be avoided through the use of  a passive 
damping treatment. The simple configuration of  a 
mechanical passive damping treatment is to use a 

viscoelastic material (VEM), which is sandwiched 
between a host structure and a cover layer, called 
Passive Constrained Layer Damping (PCLD) 

treatment EFig. la]. In a constrained viscoelastic 
layer the vibration energy of a host structure is 
dissipated throug h the shear deformation of  a 
viscoelastic layer, which is bonded to a vibrating 
structure. Accordingly, the constrained damping 

layer is capable of  dissipating higher vibrational 
energies and, in turn, achieving higher damping 
ratios, especially in the high frequency modes 
(Rao and Nakra, 1974). 

Another form of passive damping treatments is 
the electrical passive shunt circuit (Fig. 1 (b)). 

The shunt circuit consists of  three electrical com- 
ponents : a capacitor C (PZT), an inductor and a 

resistor R, which is called a resonant shunt circuit 
(Hagood and Flotow, 1991, Moon et al., 2002). 

The two external terminals of the PZT, modeled 
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Fig. 2 Schematic drawing of the hybrid system 
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(c) Two passive damping treatments 

Fig. 1 A hybrid passive damping system 

as a capacitor, are connected to the series inductor 

and resistor shunt branch circuit. The piezo- 

ceramic element is used to convert mechanical 

energy of a vibrating structure into electrical en- 

ergy by direct piezoelectric effect. This electric 

energy is dissipated as heat through the shunt  

resistor efficiently when the electric resonant fre- 

quency matches the mechanical resonant frequen- 

cy. Therefore, a passive resonant shunt circuit has 

to be turned to suppress only a target mode as a 

mechanical vibration absorber. 

In this paper, a hybrid passive damping system 

is used to control mul t i -mode vibration ampli- 

tudes of beams, which is combined the mechani- 

cal passive damping treatment with the electrical 

passive shunt circuit (Fig. l ( c ) ) .  Here, the pas- 

sive constrained layer damping is used for sup- 

pressing the vibration amplitudes in the high fre- 

quency range. The shunt damper is augmented as 

an effective means to control the vibration ampli- 

tude in the low frequency range. Therefore, the 

hybrid system can be an excellent and practical 

means for controlling the vibration of  massive 

structures with no need for large actuation volta- 

ges. 

2. Equations of Motion of the Hybrid 
Passive System 

A mathematical model is developed to describe 
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Fig. 3 Geometry and deformation of the hybrid sys- 

tem 

the longitudinal,  flexural, and shear strain behav- 

ior of  the hybrid system in this section. The 

hybrid passive system consists of a host beam, a 

viscoelastic layer, a constraing layer, and a pie- 

zoelectric layer as shown in Fig. 2. A viscoelastic 

layer is sandwiched between a constraining layer 

and a host structure. A piezo layer is bonded to 

the lower surface of a beam and connected a series 

resonant shunt circuit. It is assumed that the shear 

strains in the beam layer, piezo layer, and cover 

layer are negligible and shear strains are con- 
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sidered only in the viscoelastic material. The 

transverse displacement, w, of  all points on any 
cross-section of  the laminated beam is considered 
to be equal. The damping layer is assumed to be 
linearly viscoelastic with their constitutive equa- 

tions that are described using the shear complex 
modulus approach. The piezoelectric layer is as- 
sumed to be perfectly bonded and thin, so that 
electric displacement is constant through the 
thickness. Figure 3 shows the geometry and de- 

formation of the hybrid passive system. The shear 
strain of  the viscoelastic material can be defined 
a s  

Ow 
r = ~ - - - f f  (1) 

where w is the transverse displacement and a is 
the angle of  rotation due to bending (Lam et al., 

1997). The longitudinal displacements for the 
viscoelastic layer, cover layer, and piezoelectric 

layer can be described in terms of the longitudinal 
displacement of  the beam layer as follows : 

u , = u b -  - ~ - +  y r, 

U c = u b - - d  ~ x -  x + t~r, (2) 

up= ub + tb + tp Ow 
2 Ox"  

where tb, ts, tc, tp, is denoted the thicknesses of a 
beam layer, viscoelastic layer, constraining layer, 

and piezo layer, respectively. The subscript b 
refers to the host beam layer, s the viscoelastic 
layer, c the constraining layer, and p the piezo 
layer. The distance, d is 

{ tb+tp ~{ Ow ~ (3) 
d = u b +  \ 2 / \  Ox ] 

The constitutive equation for a piezoelectric 
element depends on the mechanical stress, a, and 
strain, r as well as the electric field, E ,  and the 
electric displacement, D. A common form of con- 
stitutive equations, especially, for a passive shunt 
damping is (IEEE, 1987) 

[ E l - - - - [ E h  7 ]  [ 0 ]  (4) 

where Es is the elastic modulus at the constant 

displacement, h is the piezoelectric constant, and 
/~ is the dielectric constant. 

The kinetic energy, T, expression for the la- 
minated hybrid passive system is 

T =  Tb+ Ts+  Tc+ Tp (5) 

where 

_ 1 L O u b  2 3 w  2 

1 L 3u~ ~ 3w ~ 

1 z Ous 2 

1 z 3Uc z 

The potential energy, V, of the hybrid system can 
be described as 

V =  Vb+ Vc+ Vp+ ]Is (6) 

where 

1 L Oub z O2w 2 

1 L Our 2 O2w 2 

_ 1 L Oup z 32w 2 

Ou p 02 w 

+ Apl~gaD21A H d x  

1 z 3us 2 3a 2 

+ G ~ r Z ] A H d x ,  

where A is the cross-sectional area and I the 
moment of inertia about the neutral axis for each 

layer and zp is the distance from the neutral axis 
of the laminated beam to PZT. The material 
properties are defined by the density, p, and 

young's modulus, N. Here, D is the electric dis- 
placement of the PZT, h31 the piezoelectric con- 
stant, and fl~a the dielectric constant. Heavisid 
e function, is AH,  is [ H ( x - x l ) - H ( x - - x 2 ) ] ,  

which defines the length and position of the 
patch. The virtual work consists of  three terms: 
the first one is for a work done by the piezo 
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resonant damper, the second is due to the external 
force, and the third is due to the inherent damping 
force. 

aw= foLb v,h(tl  DAZdx + fooL/ (x, t>  wdx 
z 3w - fo Cb-~-Dwdx (7) 

The equations of motion and all the natural 
and geometric boundary conditions can be ob- 
tained by applying Hamilton's Principle, 

3 f~[ T - V+ Wldt=O. (8) 

where t~ and h are the end points in the time 
domain and 3 is the virtual work parameter. 
Substituting the strain energy and kinetic energy 
into Hamilton's principle yields the following 
equations of motion. 

-[Ip~A,<t,+ t,)-IotAs<t,+ is)-,cA~l( ~ ) A H  

1 + 5+1 , +  2+ 2 ~w -[~ppA~(tb tp) ypgtdt~ t,) p~4d](~)AH 

+[lp~A&(tb+ts) ~r Yw 
(9) 

+ [ Edp + E,I, + Edr + EpIp + l Edip ( tb + tp) ~ 

+ l EdL(t~ + t,)2 + Edt,d2](~x~ )AH 

+ [lEnA/t,+ t~)z-lEdt,(t,+t,)2+ E~Ad]( ~x ~ )AH 

-[1Edl&(t~+t*)+Ed:E'Adt']ex(~@-~)AH=/(x' t) 

~Zu' (pM,+psAs+prAc)(~)AH 

+ 1 t + O~r O~u~ 

( eU, lA H (10) 
-(ECt~+E~A,+E~4,)~ Ox ~ ] 

1 1 ~w -[~-E~A~ (t~+ t~) -~EsA,(t~ + t,) + EcAd]( ~x~ )AH 

1 O~r 
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1 ~+ ~ 02r 

1 O2ub 

1 z ~ 0 zr 

Hamilton's principle also yields the following 
boundary conditions : 

either ub=0. or 

EbAb( ~ ) + (E~4, + E,A, + E~A,) ( ~ )A H 

+ [1EpA/tb+tp)-1Ev4s(tb+t.)+ E~A.d](~t 2 )AH 

+ [1EsAst.+ E~A&](~x )AH=-hs~t, bD3AH 

12) 

either w--0. or 

E& ( ~x3 ) + [ EpIp + EsI, + Edc + l EpAp ( tb + tp) ~ 

+ l EsAs(t~ + ts)Z + E~Acd~]( ~x3 )AH 

+ [1E~A / tb + t.) -1EsA.( tb + t.) + E~Acd ] ( ~ ) AH 

J \ f X  / 

13) 

~W either -8-~-=0, or 

Edb( ~x~ ) + [ Eplp + Egs + Edc + l EpA/ tb + t:) 2 

+ lEsAs(tb+t,)2+E~A~f](~x~ )AH 

1 1 Oub + [~EpAp (tb+ t,)-~Edts(tb +t,)+ EdLd ]( ~ )AH 14) 
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either r = 0 ,  or 

(1EsAsts + EcActs ] ( ~-~-) A H 

1 ~w -[EsAs-l--~EsAs(tb+ts) ts-EcAcdts](~-x2 )AH (15) 

where the function, A/z, is [ /z(X--Xx)-- tz(x--  
xz) ], which represents two concentrated sources 
at x~ and xz, respectively. The assumed mode 
method is used to discretize the equations of  
motion [Eqs. (9)-(11)]  into a set of ordinary 
differential equation. The shape functions for the 
series expansions are used to expand the trans- 
verse, longitudinal displacement, and shear strain 
functions, w, ub, r ,  respectively (Meirovitch, 
1967). 

n 

w (x, t) = E W. (x) r (t), 
? t=l  

Ub(X, t) = ~, Vn(x) On(t), (16) 
n = l  

r(x, t )=~,  r.(x) gr.(t) 
n = l  

The displacement functions, W~(x) , Un(x) , Z'. 
(x) are sets of admissible functions which are 
chosen for each generalized modal coordinate, r  
(t), On(l), grn(t) respectively. Applying mode 
shape functions to the equation of motion, Eqs. 
(9)-(11) results in the following discretized 
differential equations of the hybrid passive sys- 
tem. 

m w ( t )  +CIi/(t) +KW(t)  =fext+f~zo (17) 

where f~xt=[ foLr (x, t) dx, O, O]-r and 

fp~o=[fp~ fp2 0] r Vsh(t) with 

f m = -  b&lEpzP foo LW~[ Y (x-xl) - 8'(x-x2)] dx, 

fp2 = - b&lEpzP foo LUi[ 8 (x-x1) - 8 (x-x2)] dx. 

3. Shunt Voltage and Shunt 
Parameters  of the Hybrid System 

The charge generated by the PZT patch due to 

the structural vibration of the cantilever beam can 
be sought from the electric field displacement, 
[D~ as follows : 

t "  
Q (t) = I D  dA with 

J A  (18) 
[D] = [d~ r{ T} + [r r{E} 

where [d] ,  {T}, [el and {E} represent the 
piezoelectric strain constant, stress, dielectric 
permittivity, applied electric field, respectively. 
Substituting the mode shape function into Eq. 
(18), the output of piezo sensor can be derived as 
follow : 

Oi (t) = ( C1D1. + C2D2. + C~ Vsh) 
[ H  (x -- Xs) -- H (x - xz) ] 

(19) 

n LOU n 
where C,=dslEpbp, D,n=n~_lf ~ ~ A H d x ,  

G = - & E p b ,  ((tb + tp)/2 + as), 

D - "  L~ 2.--.~__1f o ~-x 2 AHdx. (20) 

By differentiating the induced charge of the pie- 
zoelectric sensor with respect to time, the current 
across PZT electrodes can be obtained. 

_ dQ, =[CIDln sO(s) +GDzn sr I ~ ( t ) -  dt  

+ Cfs  Vs.] 
(21) 

From the sensor current, the shunt voltage can 
be sought as follows : 

LCfsZ+RCFs+I[C,~.I l t)(t)  / (22) 
[g(t)j 

Here, the inherent capacitance of the PZT should 
be determined by using the below equation. 

C [ - / ~ r  • So • (23) 
tp 

where C~ is the capacitance of the PZT at con- 
stant s t ress , /~r  is the relative dielectric constant 
at 1KHz, and the constant e0 is 8.85• 10-1ZF/m, 
Ap is the surface area of PZT. The product of 
/~r  e0 is called the permittivity of  the dielectric 
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denoted e. The required inductor and shunt resis- 

tor values in Eq. (22) are calculated from the 

following equation. 

L- -  1 R =  rop~ (24) 
2 S ' (oeC~ s E C p (On 

where (Oe is the electrical resonant frequency. The 

PZT capacitance at constant strain, Cg, is 

obtained from the following equation which is 

dependent upon the electromechanical coupling 

coefficient, k31 provided by the manufacturer. 

$ T 2 Cg = Cp (1-k31) (25) 

The tuning parameter, tom, is calculated from 

the generalized electromechanical coupling con- 

stant (Hagood's,  1991) : 

Kul 
rope = 1.414 - -  where 

I+Ka~ (26) 
((O o) 2 _  2 

Here (Oo and (O~ are the natural frequencies of the 

structural mode of interest with an open circuit 

and a short circuit piezoelectric, respectively. 

4. Experimental Implementation 

Experiments were performed to examine the 

performance behaviors of the hybrid system. A 

PZT 5H (Fuji  ceramics, 50• was bonded 

to the lower surface of an aluminum beam (220 • 

20mm) by using epoxy adhesive. This edge of  the 

piezoceramic was 0.1cm away from a fixed end of  

the beam. This fixed end was clamped horizon- 

tally in a rigid support fixture that was excited 

by an electro-magnetic shaker (TIRA, Vib5200). 

The internal function generator of  the spectrum 

analyzer (HP 3566A) is used to generate a ran- 

dom excitation signal from 1Hz to 500Hz. A gab 

sensor (Kaman, KD2300-6C) was located at 

the free end of the beam to measure the system 

output responses. A sandwiched viscoelastic core 

(SOUNDCOAT, 50 • 20mm) is used as the damp- 

ing material. An aluminum cover layer (50 • 20 X 

0.05mm) is used as a constraining layer. Tables 1 

and 2 show the main physical and geometrical 

parameters of the aluminum, D Y A D  and PZT 

5H. An active filter (Horowitz and Hill, 1989) is 

used as a synthetic inductor in the shunt branch 

circuit as shown in Fig. 4. The advantages of this 

inductor are due to its convenience, lightweight, 

its ability to generate various inductances. R4 is 

ordinarily a capacitor, with the other impedances 

being replaced by resistors, creating an inductor 

L = R * C ,  where R*=RIR3Rs/R2. By changing 

the variable resistor R2, various inductance values 

could be obtained. The resistance value 10,000 f~ 

for R1, R3, Ns and the capacitance lOnF for R4 
are used for this analysis. 

Fig. 4 

m 

Circuit diagram of a synthetic inductor. 

Table 1 Physical and geometrical properties of the beam, viscoelastic and PZT layer. 

Young's modulus (Pa) Density (kg/m 3) Poisson's Ratio (v) Thickness (mm) 

A1 beam 7.0El0 2700 0.33 1.5 
DYAD-606 * 1104 0.49 0.508 

PZT 5.9E10 7400 0.3 0.5 

�9 Depending on temperature and frequency 

Table 2 Main piezoelectric parameters of the PZT-5H. 

dst g31 k3a Kzl Dissipation Curie Temp. 
(m/V) (Vm/N) Coupling Coef. Dielectric Factor (~ 

-260E- 12 -8.7 E-3 0.36 3100 1.8% 190 
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5. Results  and Discuss ions  

The performances of the hybrid passive system 
are discussed as considering a series resonant 
shunt circuit for suppressing the first frequency 
mode and a PCLD patch for high frequency 
vibration amplitudes. As shown in Fig. 5, the 
electrical passive damping is tested experimentally 
and theoretically to reduce the vibration ampli- 
tudes of the first bending mode of the hybrid 
system. It is evident that decreasing the resistance 
results in improving the vibration attenuation 
characteristics of the first bending mode. When 
the resistance is decreased below the optimal 
resistance [when the peak becomes a flat plat- 
eau], the two peaks rise up, exactly as it does in 
the case of a mechanical absorber. The electrical 
passive damping is found to produce about 17dB 

25  F r e q u t ~ n c y ( H z )  45  

(a) 
7o , I ) : I ', 

6 0  . . . . .  ~- . . . . .  ~- . . . . . . .  '~ . . . . . . . . . . .  ' .  . . . . .  ; . . . . .  ~ . . . . . .  

~ ~ S [  ..... '~ . . . . . . . . .  ~ '~i . . . . . . . . . . .  ~ i!_ ..... '~! ..... '~! ...... 

Frequency  (Hz) 

(b) 
Fig. 5 Transfer responses of the hybrid system for 

the first mode: (a) Experiment (b) Theory. 
E(~): Open (~): 40,000f2 (~): 18,230Q (~: 
8,140 f2]. 

reduction from the peak vibration amplitude of 
the open circuit. The optimum resistance value 
was chosen from the Eq (24) at first and then was 
a little bit adjusted for the optimum by a trial- 
and-error method. Because the gyrator circuit is 
not a pure inductor, it creates a resistive compo- 
nent which is not desirable for designing the 
optimal resistance in the shunt branch circuit. 

The performances are obtained from the ex- 
perimental testing done for two cases : an uncon- 
strained layer damping (without a cover layer) 
and a constrained layer damping (with a cover 
layer). As shown in Table 3, the magnitudes of 
the first, second, and third mode are reduced by 
0.6dB (6.7%), 1.4dB (15%) and 1.7dB (17%), 
respectively, from the peak amplitude of a plain 
beam for the case of unconstrained layer 
damping. The constrained layer damping sup- 
presses the first mode by 2.1dB (21%), the second 
mode by 5.1dB (44%) and the third mode by 
9.2dB (65%). It can be concluded that the con- 
strained layer damping is superior to the uncon- 
strained layer damping in view of vibration reduc- 
tion performance. Such superiority stems from the 
fact that the constrained layer damping layer ex- 
periences shear strain which are much larger than 
that encountered in the unconstrained layer damp- 
ing. This feature is displayed clearly in Fig. 6. 

iiit , 
III Sec~dmode 
E] Third made~ 

-8 ,,l 1 

Fig. 6 

Unconstrained Conskramed I-Iybti d System 
Damping Damping 

Comparison between amplitude reductions of 
the unconstrained, constrained layer damp- 
ing, and hybrid system 
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Table 3 Vibration amplitude attenuations of unconstrained, constrained, and hybrid system. 

1 st mode (Attenuation) 2 na mode (Attenuation) 3 ~a mode (Attenuation) 

Unconstrained 0.6dB (6.7~o) 1.4dB (15%) 1.7dB (17%) 
Constrained 2. ldB (21%) 5.1 dB (44%) 9.2dB (65 %) 

Hybrid system 19.7dB (89%) 7.6dB (58%) 12.7dB (77%) 

Finally, two passive systems, the resonant shunt 

circuit and the constrained layer damping, were 

operated simultaneously to suppress the multiple 

modes over the broad frequency range as shown 

in Fig. 7. The vibration amplitudes are measured 

of 19.7dB (89.6%) reduction for the first mode, 

7.6dB (58.4,%0) for the second mode, and 12.7dB 

(76.9 %) for the third mode as shown in Fig. 6. 

Also, the theoretical natural frequencies of the 

plain beam, unconstrained layer damping, con- 

strained layer damping, and hybrid system are 

compared with experimental measurements for 

the first, second, and third modal frequencies as 

shown in Fig. 8. The results show a good agree- 

ment in the natural frequencies evaluated by two 

methods. The discrepancy is about 2-3% for the 

plain beam and unconstrained layer damping and 
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Fig. 7 Transfer responses of the hybrid system : 
(a) Experiment (b) Theory. 
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Comparison between theoretical and exper- 
imental natural frequencies of the plain beam, 
unconstrained, constrained layer damping, 
and hybrid system 

5-7% for the constrained layer damping and 

hybrid system. 

6. C o n c l u s i o n s  

Hybrid system is devised by combining the 

mechanical passive damping treatment with the 

electrical passive damping. The mechanical pas- 

sive treatment provides a fail-safe damping and 

improves the stability of the system. The resonant 

shunt circuit is augmented for suppressing a 

vibration mode in the low frequency range. The 
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) 

equations of motion are derived using Hamil- 
ton's principle. Assumed modes are used to dis- 
cretize these equations. The shunt voltage was 
formulated from the charge generated by the 
piezoeeramic due to the direct piezoelectric effect. 
The derived mathematical model was validated 
experimentally. The results showed a good agree- 
ment in between theory and experiment. 
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